viernes, 24 de abril de 2009

ESTRUCTURA Y FUNCION CELULAR.


COLEGIO DE ESTUDIOS CIENTIFICOS Y TECNOLOGICO DEL ESTADO DE OAXACA


CENTRO: EMSaD 22 “LA MIXTEQUITA”

MATERIA: BIOLOGIA I

ASESOR (A): LIC. AGUSTINA DIAZ RIDRIGUEZ

ALUMNO: GREGORIO REYES LOPEZ

TRABAJO: PUBLICAR INFORMACION EL LA WEB

LUGAR: LA MIXTEQUITA OAXACA

FECHA: 23/04/09


.......................................................................................................................................


2.2.- ESTRUCTURA Y FUNCION CELULAR.


La microscopía electrónica es una herramienta muy importante en el estudio de la estructura celular. Su principal ventaja reside en que proporciona imágenes de diferentes estructuras celulares, en diferentes condiciones. Para determinar la función de las estructuras celulares es necesario introducir otras técnicas. Los investigadores deben purificar distintas estructuras celulares de manera que se puedan emplear métodos físicos y químicos para determinar lo que cada una realiza. En la actualidad los biólogos celulares emplean técnicas experimentales distintas a comprender la función de las estructuras celulares

Antiguamente los biólogos pensaban que las células estaban formadas por una gelatina uniforme que llamaban protoplasma. Con la microscopía electrónica y otras herramientas modernas de investigación, se ha extendido la percepción del mundo con respecto a las células. En la actualidad sabemos que la célula tiene un alto nivel de organización y que es sorprendentemente compleja: tienen su propio centro de control, su sistema de transporte interno, fuentes de energía, fábricas para procesar la materia que requiere, plantas de empaquetamiento, e incluso un sistema de autodestrucción. En nuestros días el término protoplasma si acaso se utiliza es en un sentido muy general. La porción de protoplasma que se encuentra fuera del núcleo se llama citoplasma, y el material interno del núcleo se llama nucleoplasma. Los organelos se encuentran suspendidos en el componente líquido del citoplasma y del nucleoplasma. Cada uno de los organelos delimitados por sus membranas forma uno o más compartimentos independientes dentro del citoplasma.


ORGANIZACIÓN UNICELULAR:

Células Eucariotas:

Los organismos Eucariotas son aquellos que contienen una estructura llamada núcleo, que se encuentra limitado por una membrana. El núcleo sirve para localizar el material genético, el ADN.
El término eucariota significa "núcleo verdadero" y se refiere a que el material genético de las células, está incluido en un núcleo distinto, rodeado por una membrana nuclear. Estas células también presentan varios organelos limitados por membranas que dividen el citoplasma celular en varios compartimentos adicionales. Algunos organelos sólo se presentan en algunas variedades celulares específicas. Por ejemplo, los cloroplastos, que atrapan la luz solar para conversión de energía, se hallan en las células que realizan fotosíntesis. Los organelos especializados de las células eucariotas les permiten resolver algunos de los problemas relacionados con su gran tamaño, de manera que pueden ser considerablemente más grandes que las células procariotas.













Células procariotas:

Las células procariotas son aquellas que carecen de núcleo, vacuolas, mitocondrias y otros orgánulos subcelulares, generalmente son más pequeñas que las eucariotas. Son organismos de una sola célula que pertenecen al grupo Mónera: se incluyen bacterias y algas verde azules o cianobacterias, que no son sino bacterias fotosintéticas. El ADN de las células procariotas está confinado a una o más regiones nucleares, que a veces se denominan nucleoides, los cuales no están limitados por una membrana independiente.

Las células procariotas tienen una membrana plasmática que confina el contenido celular a un compartimento interno, pero carece de un sistema de membranas internas en forma de organelos. En algunas células procariotas la membrana plasmática puede plegarse hacia adentro y forma un complejo de membranas internas en donde se piensa se lleva a cabo las reacciones de transformación de energía. Algunas células procariotas también tienen una pared celular o membrana externa, que es una estructura que encierra a toda la célula, incluida la membrana plasmática.











Virus:

Los virus o viriones no son seres celulares, dado a que no se mueven por si mismos y no son capaces de metabolizar de manera independiente: sólo pueden vivir cuando han infectado una célula. Un virus consiste en un filamento de ADN o de ARN (pero nunca ambos ácidos nucleicos en un mismo virus) contenido en una envoltura proteica de forma geométrica denominada cápside o cápsida, que está integrada por un conjunto de subunidades idénticas, los capsómeros, dispuestas en mosaico. Los virus pueden presentarse desnudos o bien revestidos de una envoltura lipoproteica, procedente de una porción de la membrana plasmática de la célula huésped.


2.2.1.- SISTEMA DE MEMBRANA.

*Membrana celular

La membrana está constituida de lípidos y proteínas. La parte lipídica de la membrana está formada por una película bimolecular que le da estructura y constituye una barrera que impide el paso de substancias hidrosolubles.


Estructura de la Membrana Celular.

Las proteínas de la membrana están suspendidas en forma individual o en grupos dentro de la estructura lipídica, formando los canales por los cuales entran a las células, en forma selectiva, ciertas substancias.

La selectividad de los canales de proteínas le permite a la célula controlar la salida y entrada de substancias así como los transportes entre compartimentos celulares. Las proteínas de la membrana no solo hacen que el transporte a través de ella sea selectivo, sino que también son capaces de llevar a cabo transporte activo (transferencia en contra del gradiente de concentración).
Las demás funciones de la membrana, como son el reconocimiento y unión de determinadas substancias en la superficie celular están determinadas también por la parte proteica de la membrana. A estas proteínas se les llaman receptores celulares. Los receptores están conectados a sistemas internos que solo actúan cuando la substancia se une a la superficie de la membrana. Mediante este mecanismo actúan muchos de los controles de las células, algunos caminos metabólicos no entran en acción a menos que la molécula "señal", por ejemplo, una hormona, haya llegado a la superficie celular.

En la membrana se localizan unas glicoproteínas que identifican a otras células como integrantes de un individuo o como extrañas (inmunoreacción).
Las interacciones entre las células que conforman un tejido están basadas en las proteínas de las membranas.
Resumiendo, la estructura de las membranas depende de los lípidos y las funciones dependen de las proteínas.

*Retículo endoplasmático

El retículo endoplasmático es una red interconectada que forma cisternas, tubos aplanados y sáculos comunicados entre sí, que intervienen en funciones relacionadas con la síntesis proteica, metabolismo de lípidos y algunos esteroides, así como el transporte intracelular. Se encuentra en la célula animal y vegetal pero no en la célula procariota. Es un orgánulo encargado de la síntesis y el transporte de las proteínas.



Imagen de un núcleo, el retículo endoplasmático y el aparato de Golgi.(1) Núcleo. (2) Poro nuclear. (3) Retículo endoplasmático rugoso (REr). (4) Retículo endoplasmático liso (REl). (5) Ribosoma en el RE rugoso. (6) Proteínas siendo transportadas. (7) Vesícula (transporte). (8) Aparato de Golgi. (9) Lado cis del aparato de Golgi. (10) Lado trans del aparato de Golgi. (11) Cisternas del aparato de Golgi.

El retículo endoplasmático rugoso se encuentra unido a la membrana nuclear externa mientras que el retículo endoplasmático liso es una prolongación del retículo endoplasmático rugoso.

El retículo endoplasmático rugoso tiene esa apariencia debido a los numerosos ribosomas adheridos a su membrana mediante unas proteínas denominadas "riboforinas". Tiene unos sáculos más redondeados cuyo interior se conoce como "luz del retículo" o "lumen" donde caen las proteínas sintetizadas en él. Está muy desarrollado en las células que por su función deben realizar una activa labor de síntesis, como las células hepáticas o las células del páncreas.

El retículo endoplasmático liso no tiene ribosomas y participa en el metabolismo de lípidos.
El Retículo endoplasmático tiene variedad de formas: tubúlos, vesículas, cisternas. En algunos casos en una misma célula se pueden observar los tres tipos.

Funciones

Síntesis de proteínas: La lleva a cabo el retículo endoplasmático rugoso, específicamente en los ribosomas adheridos a su membrana. Las proteínas serán transportadas al Aparato de Golgi mediante vesículas de transición donde dichas proteínas sufrirán un proceso de maduración para luego formar parte de los lisosomas o de vesículas secretoras.

Metabolismo de lípidos: El retículo endoplasmático liso, al no tener ribosomas le es imposible sintetizar proteínas pero sí sintetiza lípidos de la membrana plasmática, colesterol y derivados de éste como las ácidos biliares o las hormonas asteroideas.

Detoxificación: Es un proceso que se lleva a cabo principalmente en las células del hígado y que consiste en la inactivación de productos tóxicos como drogas, medicamentos o los propios productos del metabolismo celular, por ser liposolubles (hepatocitos)

Glucosilación: Son reacciones de transferencia de un oligosacárido a las proteínas sintetizadas. Se realiza en la membrana del retículo endoplasmático. De este modo, la proteína sintetizada se transforma en una proteína periférica externa del glucocálix

*Aparato de Golgi

El aparato de Golgi es un organeloseso (orgánulo) presente en todas las células eucariotas excepto los glóbulos rojos y las células epidérmicas. Pertenece al sistema de endomembranas del citoplasma celular. Está formado por unos 4-8 dictiosomas, que son sáculos aplanados rodeados de membrana y apilados unos encima de otros. Funciona como una planta empaquetadora, modificando vesículas del retículo endoplasmático rugoso. El material nuevo de las membranas se forma en varias cisternas del Golgi. Dentro de las funciones que posee el aparato de Golgi se encuentran la glicosilación de proteínas, selección, destinación, glicosilación de lípidos, almacenamiento y distribución de lisosomas y la síntesis de polisacáridos de la matriz extracelular. Debe su nombre a Camillo Golgi, Premio Nobel de Medicina en 1906 junto a Santiago Ramón y Cajal. Está formado por varios sacos aplanados, cuya función es completar la fabricación de algunas proteínas.


















Imagen del núcleo, del retículo endoplásmico y del aparato de Golgi.
(1) Núcleo.(2) Poro nuclear.(3) Retículo endoplasmático rugosos (RER).(4) Retículo endoplasmático liso (REL).(5) Ribosoma en el RER.(6) Proteínas trasportadas.(7) Vesícula trasportadora.(8) Aparato de Golgi (AG).(9) Cisterna del AG.(10) Transmembrana de AG.(11) Cisterna de AG.(12) Vesícula secretora.(13) Membrana plasmática.(14) Proteína secretada.(15) Citoplasma.(16) Matriz extracelular.


*Vacuola

Una vacuola es un orgánulo celular presente en plantas y en algunas células protistas eucariotas. Las vacuolas son compartimentos cerrados que contienen diferentes fluidos, tales como agua o enzimas, aunque en algunos casos puede contener sólidos. La mayoría de las vacuolas se forman a través de la fusión de múltiples vesículas de la membrana. El orgánulo no posee una forma definida, su estructura varía según las necesidades de la célula.

Las vacuolas que se encuentran en las células vegetales son regiones rodeadas de una membrana "tonoplasto" o "membrana vacuolar" y llenas de un líquido muy particular llamado "jugo celular".
La célula inmadura contiene una gran cantidad de vacuolas muy pequeñas que aumentan de tamaño y se van fusionando en una sola y grande, a medida en que la célula va creciendo. En la célula madura, el 90 % de su volumen puede estar ocupado por una vacuola, con el citoplasma reducido hacia una capa muy estrecha apretada contra la pared celular.





Esquema de una célula animal típica, mostrando el citoplasma con sus componentes (u orgánulos). Orgánulos: (1) nucléolo (2) núcleo (3) ribosomas (4) vesícula (5) retículo endoplasmático rugoso (REr) (6) aparato de Golgi (7) citoesqueleto (8) retículo endoplasmático liso (REl) (9) mitocondrias (10) vacuola (11) citoplasma (12) lisosoma (13) centriolos.


*Vesícula

La vesícula en biología celular, es un orgánulo que forma un compartimento pequeño y cerrado, separado del citoplasma por una bicapa lipídica igual que la membrana celular.

Las vesículas almacenan, transportan o digieren productos y residuos celulares. Son una herramienta fundamental de la célula para la organización del metabolismo.
Muchas vesículas se crean en el aparato de Golgi, pero también en el retículo endoplasmático, o se forman a partir de partes de la membrana plasmática. Vejiga pequeña en la epidermis, llena generalmente de líquido seroso.


2.2.2.-MATERIAL GENÉTICO O GENOMA.




El material genético se emplea para guardar la información genética de una forma de vida orgánica. Para todos los organismos conocidos actualmente, el material genético es casi exclusivamente ácido desoxirribonucleico (ADN o DNA). Algunos virus usan ácido ribonucleico (ARN o RNA) como su material genético.

Se cree generalmente que el primer material genético fue el ARN, inicialmente manifestado por moléculas del ARN que autoreplican flotando en masas de agua. Este período hipotético en la evolución de la vida celular se llama la hipótesis del mundo de ARN. Esta hipótesis está basada en la capacidad del ARN a actuar como un material genético y como un catalizador, conocido como una ribozima o ribosoma. Sin embargo, cuando las proteínas (que pueden formar enzimas) vinieron a la existencia, la molécula más estable, ADN, se convirtió en el material genético dominante, una situación que continúa hoy. La naturaleza de la doble cadena del ADN deja que las mutaciones se corrijan, y también el ARN es intrínsecamente inestable.

Las células modernas usan el ARN principalmente para construir proteínas de las instrucciones de ADN, en la forma de ARN mensajero, ARN ribosómico y ARN de transferencia.
El ARN y el ADN son macromoléculas compuestos de nucleótidos, de los cuales hay cuatro en cada molécula. Tres nucleótidos compone un codón, un tipo de "palabra genética", que es como un aminoácido en una proteína. La traducción codón-aminoácido se conoce como Traducción (genética).

*Núcleo celular

El núcleo celular es una estructura característica de las células eucariotas. Contiene la mayor parte del material genético celular, organizado en cromosomas, basados cada uno en una hebra de ADN con acompañamiento de una gran variedad de proteínas, como las histonas. Los genes que se localizan en estos cromosomas constituyen el genoma nuclear de la célula eucariótica, donde se encuentran otros genomas, propio de algunos orgánulos de origen endosimbiótico. La función del núcleo es mantener la integridad de estos genes y controlar las actividades celulares a través de la expresión génica.

Los principales elementos estructurales son la envoltura nuclear, que corresponde a una doble membrana que lo encierra y separa del citoplasma celular, y la lámina nuclear, que es una red de filamentos intermedios que se encuentra por el interior de la envoltura nuclear la cual da soporte mecánico al igual que lo hace el citoesqueleto en toda la célula. Ya que la membrana nuclear es impermeable a la mayoría de las moléculas, son necesarios poros nucleares para permitir el movimiento de moléculas a través de la envoltura. Estos poros cruzan ambas membranas de la envoltura nuclear, proporcionando un canal que permite el movimiento libre de pequeñas moléculas e iones, mediante difusión simple. El movimiento de las moléculas más grandes como las proteínas son controlados cuidadosamente, y requiere transporte activo facilitado por proteínas transportadoras. El transporte nuclear es de fundamental importancia para la función celular, ya que el movimiento a través de los poros es necesario tanto para la expresión genética como el mantenimiento cromosomal.

Aunque el interior del núcleo no contiene límites delimitados por membranas, sus contenidos no son uniformes, y existe un número de cuerpos subnucleares, constituídos por proteínas, moléculas de ARN y conglomerados de ADN únicos. El mejor conocido de estos es el nucléolo, el cual está principalmente relacionado con el ensamblaje de las subunidades de los ribosomas. Luego de ser producidas en el nucléolo, éstas se unen y forman los ribosomas en el citoplasma, que son los que traducen el ARNm.

El núcleo es una estructura dinámica, que en los organismos con mitosis abierta, se deshace durante el reparto cromosómico. Se llama núcleo interfásico al que se observa antes de la mitosis y después de ésta, ya duplicado; es decir, durante los momentos del ciclo celular que no corresponden a la mitosis. Cuando no se especifique otra cosa, las explicaciones siguientes se refieren al núcleo interfásico.



Figura del núcleo y el retículo endoplásmico: (1) Envoltura nuclear. (2) Ribosomas. (3) Poros Nucleares. (4) Nucléolo. (5) Cromatina. (6) Núcleo. (7) Retículo endoplasmático. (8) Nucleoplasma.


*Nucleoide

Nucleoide (que significa Similar al núcleo y también se conoce como Región nuclear o Cuerpo nuclear) es la región que contiene el ADN en el citoplasma de las células procariotas. Esta región es de forma irregular.
En las células procariotas, el ADN es una molécula única, generalmente circular y de doble filamento, que se encuentra ubicada en un sector de la célula que se conoce con el nombre de nucleoides, que no implica la presencia de membrana nuclear. Dentro del nucleoide pueden existir varias copias de la molécula de ADN.

Este sistema para guardar la información genética contrasta con el sistema existente en células eucariotas, donde el ADN se guarda dentro de un orgánulo con membrana propia llamado núcleo.





En la imagen se ve el esquema de una célula procariota. En el centro, Nucleoide (ADN) marcado con el número 7.

2.2.3.-MATRIZ CITOPLASMÁTICA O ENDOMATRIZ Y COMPONENTES CELULARES.

La matriz citoplasmática o citosol es una masa coloidal químicamente muy compleja: contiene proteínas, lípidos, ácidos nucleicos, hidratos de carbono, sales minerales y otras sustancias solubles en agua que es el componente básico. Puede presentar aspecto homogéneo o tener granulaciones. En él se sintetizan compuestos primarios importantes (aminoácidos, sacarosa, lípidos) y compuestos secundarios como alcaloides. Incluye todos los elementos necesarios para la síntesis de proteínas (ribosomas, ARN mensajero, ARN soluble y enzimas vinculadas con este proceso).

*Cloroplasto

Los cloroplastos son los orgánelos celulares que en los organismos eucariontes fotosintetizadores se ocupan de la fotosíntesis. Están limitados por una envoltura formada por dos membranas concéntricas y contienen vesículas, los tilacoides, donde se encuentran organizados los pigmentos y demás moléculas que convierten la energía luminosa en energía química.

El término cloroplastos sirve alternativamente para designar a cualquier plasto dedicado a la fotosíntesis, o específicamente a los plastos verdes propios de las algas verdes y las plantas.



Células vegetales en las que son visibles los cloroplastos
Estructura



Interior de un cloroplasto, con una grana señalada

Las dos membranas del cloroplasto poseen una estructura continua que delimita completamente el cloroplasto. Ambas se separan por un espacio intermembranoso llamado a veces indebidamente espacio periplastidial. La membrana externa es muy permeable gracias a la presencia de porinas. Sin embargo no tanto como la membrana interna, que contiene proteínas específicas para el transporte.
Esquema de cloroplasto.

La cavidad interna llamada estroma, en la que se llevan a cabo reacciones de fijación de CO2, contiene ADN circular, ribosomas (de tipo 70S, como los bacterianos), gránulos de almidón, lípidos y otras sustancias. También, hay una serie de sáculos delimitados por una membrana llamados tilacoides los cuales se organizan en los cloroplastos de las plantas terrestres en apilamientos llamados grana (plural de granum, grano). Las membranas de los tilacoides contienen sustancias como los pigmentos fotosintéticos (clorofila, carotenoides, xantofilas) y distintos lípidos; proteínas de la cadena de transporte de electrones fotosintética y enzimas, como la ATP-sintetasa.

Al observar la estructura del cloroplasto y compararlo con el de la mitocondria, se nota que ésta tiene dos sistemas de membrana, delimitando un compartimento interno (matriz) y otro externo, el espacio perimitocondrial; mientras que el cloroplasto tiene tres, que forman tres compartimentos, el espacio intermembrana, el estroma y el espacio intratilacoidal.

*Ribosoma

Los ribosomas son complejos supramoleculares encargados de sintetizar proteínas a partir de la información genética que les llega del ADN transcrita en forma de ARN mensajero (ARNm). Sólo son visibles al microscopio electrónico, debido a su reducido tamaño (29 nm en células procariotas y 32 nm en eucariotas). Bajo el microscopio electrónico se observan como estructuras redondeadas, densas a los electrones. Bajo el microscopio óptico se observa que son los responsables de la basofilia que presentan algunas células. Están en todas las células (excepto en los espermatozoides).

En células eucariotas, los ribosomas se elaboran en el núcleo pero desempeñan su función de en el citosol. Están formados por ARN ribosómico (ARNr) y por proteínas. Estructuralmente, tienen dos subunidades. En las células, estos orgánulos aparecen en diferentes estados de disociación. Cuando están completos, pueden estar aislados o formando grupos (polisomas); las proteínas sintetizadas por ellos actúan principalmente en el citosol; también pueden aparecer asociados al retículo endoplasmático rugoso o a la membrana nuclear, y las proteínas que sintetizan son sobre todo para la exportación.

Tanto los ARNr como las subunidades de los ribosomas se suelen nombrar por su coeficiente de sedimentación en unidades Svedberg. En eucariotas, los ribosomas del citoplasma se denominan 80 S. En mitocondrias y plastos de eucariotas, así como en procariotas, son 70 S














subunidad grande del ribosoma

*Mitocondria




Las mitocondrias son orgánulos, presentes en prácticamente todas las células eucariotas, encargados de suministrar la mayor parte de la energía necesaria para la actividad celular; actúan por tanto, como centrales energéticas de la célula y sintetizan ATP por medio de la fosforilación oxidativa. Realizan, además, muchas otras reacciones del metabolismo intermediario, como la síntesis de algunos coenzimas. Es notable la enorme diversidad, morfológica y metabólica, que puede presentar en distintos organismos.

Dos mitocondrias vistas al microscopio electrónico de transmisión

*Lisosoma

Los lisosomas son orgánulos relativamente grandes, formados por el retículo endoplasmático rugoso (RER) y luego empaquetadas por el complejo de Golgi, que contienen enzimas hidrolíticas y proteolíticas que sirven para digerir los materiales de origen externo (heterofagia) o interno (autofagia) que llegan a ellos. Es decir, digestión celular.

El pH en el interior de los lisosomas es de 4,8 (bastante menor que el del citosol, que es neutro) debido a que las enzimas proteolíticas funcionan mejor con un pH ácido. La membrana del lisosoma estabiliza el pH bajo bombeando protones (H+) desde el citosol, y asimismo, protege al citosol y al resto de la célula de las enzimas digestivas que hay en el interior del lisosoma.
Las enzimas lisosomales son capaces de digerir bacterias y otras sustancias que entran en la célula por fagocitosis, u otros procesos de endocitosis.

Los lisosomas utilizan sus enzimas para reciclar los diferentes orgánulos de la célula, englobándolos, digiriéndolos y liberando sus componentes en el citosol. De esta forma los orgánulos de la célula se están continuamente reponiendo. El proceso de digestión de los orgánulos se llama autofagia. Por ejemplo, las células hepáticas se reconstituyen por completo una vez cada dos semanas.

Las enzimas más importantes del lisosoma son:
Lipasas, que digiere lípidos,
Glucosidasas, que digiere carbohidratos,
Proteasas, que digiere proteínas,
Nucleasas, que digiere ácidos nucleicos.
Sólo están presentes en células animales.

*Citoesqueleto

El citoesqueleto es un entramado tridimensional de proteínas que provee el soporte interno para las células, ancla las estructuras internas de la misma e interviene en los fenómenos de movimiento celular y en su división. En las células eucariotas, consta de microfilamentos, filamentos intermedios y microtúbulos, mientras que en las procariotas está constituido principalmente por las proteínas estructurales FtsZ y MreB. El citoesqueleto es una estructura dinámica que mantiene la forma de la célula, facilita la movilidad celular (usando estructuras como los cilios y los flagelos), y desempeña un importante papel tanto en el transporte intracelular (por ejemplo, los movimientos de vesículas y orgánulos) y en la división celular.

Con anterioridad al descubrimiento del citoesqueleto a principios de los años 80 por el biólogo Keith Porter, el Dr. Donald Ingber consideró que desde un punto de vista mecánico, la célula se comportaba de manera similar a estructuras arquitectónicas denominadas estructuras de tensegridad.

El citoesqueleto eucariotaLas células eucariotas tienen tres tipos de filamentos citoesqueléticos: microfilamentos, filamentos.


Microfilamentos de actina en fibroblastos de un embrión de ratón teñidos con falloidina.

Microfilamentos (actina y miosina)
Artículo principal: Microfilamento

Los microfilamentos tienen un diámetro de unos 7 nm ó 5 nm. Están formadas por una proteína globular llamada actina que puede presentarse de dos formas:
Actina no polimerizada (G actina): la actina se encuentra asociada a la profilina que evita su polimerización. Representa la mitad de la actina de la célula y es utilizada para polimerizar microfilamentos cuando es necesario.

Actina polimerizada (F actina): es una doble hélice dextrógira de dos hebras de actina no polimerizada. Esta actina se puede encontrar asociada a otras proteínas:
Proteínas estructurales: que permiten la unión de los filamentos de actina
Proteínas reguladoras: la más importante es la miosina que permite la contracción muscular al permitir que la actina se desplace sobre ella.

Las funciones de los microfilamentos de actina son la contracción muscular, la formación de pseudópodos, el mantenimiento de la morfología celular y, en la citocinesis de células animales, forma un anillo contráctil que divide la célula en dos.


Filamentos de queratina

Filamentos intermedios
Artículo principal: Filamentos intermedios
Son filamentos de proteína fibrosa de unos 12 nm de diámetro, son los componentes del citoesqueleto más estables, dando soporte a los orgánulos (por sus fuertes enlaces), y heterogéneos. Las proteínas que conforman estos filamentos, la citoqueratina, vimentina, neurofilamentos, desmina y la proteína fibrilar acídica de la glia, dependen del tejido en el que se hallen. Su función principal es la organización de la estructura tridimensional interna de la célula (por ejemplo, forman parte de la envuelta nuclear y de los sarcómeros). También participan en algunas uniones intercelulares (desmosomas).




Microtúbulos visualizados con anti-β-tubulina.

Microtúbulos
Artículo principal: Microtúbulo
Los microtúbulos son estructuras tubulares de 25 nm de diámetro que se originan en los centros organizadores de microtúbulos y que se extienden a lo largo de todo el Citoplasma. Se pueden polimerizar y despolimerizar según las necesidades de la célula. Se hallan en las células eucariotas y están formados por la polimerización de un dímero de dos proteínas globulares, la alfa y la beta tubulina. Cada microtúbulo está compuesto de 13 protofilamentos formados por los dímeros de tubulina. Intervienen en diversos procesos celulares que involucran desplazamiento de vesículas de secreción, movimiento de orgánulos, transporte intracelular de sustancias, así como en la división celular (mitosis y meiosis), ya que forman el huso mitótico). Además, constituyen la estructura interna de los cilios y los flagelos. Los microtúbulos son más flexibles pero más duros que la actina

2.3.-METABOLISMO CELULAR.

Es el conjunto de reacciones químicas a través de las cuales el organismo intercambia materia y energía con el medio

Reacciones Celulares Básicas.

Los sistemas vivos convierten la energía de una forma en otra a medida que cumplen funciones esenciales de mantenimiento, crecimiento y reproducción. En estas conversiones energéticas, como en todas las demás, parte de la energía útil se pierde en el ambiente en cada paso.
Los seres vivos que sintetizan su propio alimento se conocen como autótrofos. La mayoría de los autótrofos usan la energía del sol para sintetizar su alimento. Las plantas verdes, las algas y algunas bacterias son autótrofas que poseen organelos especializados donde ocurre la síntesis del alimento.

Existen otros seres que no pueden sintetizar su propio alimento. Estos seres se conocen como heterótrofos. Los animales y los hongos son ejemplo de organismos heterótrofos porque dependen de los autótrofos o de otros heterótrofos para su alimentación. Una vez que el alimento es sintetizado o ingerido por un ser vivo, la mayor parte se degrada para producir energía que necesitan las células.

El total de todas las reacciones que ocurren en una célula se conoce como metabolismo. Aquellas reacciones en que sustancias simples se unen para formar sustancias más complejas se llaman reacciones anabólicas. Por ejemplo, las reacciones en las que la célula construye moléculas de proteínas son reacciones anabólicas.

Otras reacciones son las reacciones catabólicas que son aquellas en las cuales sustancias complejas se degradan para convertirse en sustancias más simples. Las proteínas, los polisacáridos y otras moléculas se rompen en moléculas más sencillas mediante reacciones catabólicas.
La glucosa y la fructosa se unen, enlazándose a través de un átomo de oxígeno. Y forman la sacarosa. Esta es una reacción anabólica y como se elimina agua, a esta reacción se le conoce como síntesis por deshidratación
Los polisacáridos y las proteínas se sintetizan por la reacción de síntesis por deshidratación.
El disacárido maltosa al agregarle agua se descompone en dos moléculas de glucosa. Esto forma parte del proceso llamado catabolismo y la reacción específica se le conoce con el nombre de hidrólisis.


Mediante la hidrólisis, se degradan las moléculas grandes que se encuentran en las células vivas. Los hidratos de carbono, los lípidos y las proteínas se degradan por hidrólisis en moléculas más pequeñas y útiles.


2.3.4.- EL ATP Y LAS ENERGIAS EN LAS CELULAS

Cuando las células degradan la glucosa se libera energía, esta liberación se realiza en una serie de pasos controlados por enzimas. La mayor parte de le energía que se libera se almacena en otro compuesto químico: el trifosfato de adenosina o ATP.
La figura ilustra la estructura de la molécula compleja de ATP, la adenosina tiene dos partes: adenina y ribosa. La Adenosina va unida a tres grupos fosfato (cada uno posee un átomo de fósforo unido a cuatro átomos de oxígeno). Cuando una enzima separa el grupo fosfato terminal de una molécula de ATP, se libera una gran cantidad de energía que la célula utiliza. La molécula resultante es el difosfato de adenosina o ADP.
La molécula de ATP puede representarse como A-PPP, (la A representa la adenosina y P representa el fosfato). La reacción mediante la cual el ATP forma ADP y P, además de proveerle energía útil a la célula puede escribirse en la forma siguiente.


A-PPP ------- A-PP + P + energía

2.3.5.-EL CONTROL DE LAS CÉLULAS EN SUS REACCIONES METABOLICAS

Independientemente de como afecten las tensiones a las células o de cuales sean las respuestas que se elaboren, a quien si afectan es a las reacciones metabólicas, y estas mismas son las que producen las respuestas.

Es decir, los estados de equilibrio pueden ser mantenidos si la célula es capaz de reajustar el modelo de sus reacciones químicas. Estas reacciones son controladas en su área más extensa por las enzimas. Los niveles en los que operan son:

- Alteraciones estructurales en la organización de los genes.
- Controles de la trascripción del RNA.
- Controles posteriores a la trascripción
- Controles de la traducción
- Controles posteriores a la traducción.

En todos estos niveles se hallan actividades que aumenta o disminuye la cantidad de enzimas. Pero los procesos de los eucarióticos son aún muy desconocidos. Los mejores resultados se han obtenido con procarióticos. Este tipo de células es mucho más fácil de criar que las eucariotas, y se prestan más a los experimentos. Además sus esquemas génicos son más complejos. Sus modelos de desarrollo lo son y por tanto también los cambios de especialización que sufren sus genes. Muchas de las cadenas génicas especializadas están desconectadas unas de otra (las enzimas del riñón no actúan en el hígado y viceversa). Los genes procarióticos se traducen como unidades mientras que los cromosomas de los eucarióticos se mantienen dispersos y en varias cadenas.
Niveles superiores de control génico en los procariotas
Los mecanismos más estudiados son los de trascripción.

Control de la trascripción

El ejemplo que ilustrará toda la explicación es el de la metabolización de la lactosa. No hay que olvidar que son respuestas a sustancias inductoras o inhibidoras (bien podrían ser hormonas).
La inducción enzimática es realizada por dos tipos de genes: estructurales y reguladores.
Los genes responsables de la metabolización (estructurales) se agrupan en una cadena de DNA regulada por el operador (nucleótidos), junto al operador existe otra estructura similar llamada promotor A todo este conjunto se le llama OPERÓN.
La molécula de RNA polimerasa se fija al promotor se desplaza más allá del operador y a través de lo genes estructurales se convierte en RNAm. Entra en ese momento en el citoplasma y se liberan los enzimas producidos por separado.

El gen regulador está situado cerca del operón y produce una sustancia represora que mide los niveles de enzimas. (Operones inducibles).
El otro gran tipo de operones es el de los represibles, que actúan casi constantemente.
Permite ahorro de energía por parte de la célula, y especifidad en la producción enzimática.

Control de la traducción

Es el control ejercido en la velocidad de la producción enzimática.
Existen dos hipótesis sobre este mecanismo: por un lado la fijación de ribosomas a velocidad diferente o en frecuencias diferentes.
La degradación de las moléculas y la velocidad a la que sus moldes producen es otra forma de estudiar este proceso.
Niveles superiores de control génico en los eucariotas
Los mecanismos de control a nivel celular son muy diferentes y desconocidos.
Alteraciones estructurales en la organización de los genes
Los dos ejemplos siguientes ilustran las formas de regulación de la expresión génica a través de la organización de los propios genes:

Amplificación génica

En las células eucarióticas la producción de genes idénticos es suficiente para realizar todos los procesos (algunas veces no) sin embargo en las células procariótica la mayoría de los genes están representados una sola vez.
Las células eucarióticas algunas veces son insuficientes en la producción de RNAr, mientras que las procarióticas consiguen un nivel de producción satisfactorio mediante la amplificación génica, (sólo se ha podido comprobar ese proceso en la fabricación de RNAr) que consiste en: multiplicar el número de genes en un tiempo específico.

Reordenación génica

Fragmentos de DNA que cambian constantemente de lugar e intervienen en distintos procesos (la mayoría desconocidos) como la producción de inmunoglobina.
Se pensaba que la reordenación del DNA era debido a las histonas. En 1973 J: Paul demuestra que las histonas no podían controlar los genes. Los genes son conectados por proteínas no histónicas.

La cromatina ha de ser desenrollada antes de que se produzca la síntesis de RNAm. Los segmentos no desenrollados no son expresados.
Esto, en algunos casos (saliva de insectos, con cromatina gigante (politenicos) puede ser observado a microscopio.

No todos los genes de las células están activos al mismo tiempo (puffs cromosómicos).
Toda explicación sobre este mecanismo es hipotética no se sabe como funciona en realidad.
Controles posteriores a la traducción
En las células procarióticas de traduce al mismo tiempo que se produce.
En las eucarióticas el RNAm sufre modificaciones antes de ser transportado.
Encajamiento de adenina: Un extremo de RNAm alterado.
Adición de adenina: Extremo de RNAm al que se le añade una cadena de nucleótidos.
Estos procesos podrían influir en la estabilidad y vida media del RNAm. Así como en los cortes de las cadenas del RNAm.

Controles de la traducción

La vida media del RNAm eucariota es superior a la de los procariotas. La traducción del RNAm eucariota es continua.
Algunas RNAm animales permanecen sin traducir mucho tiempo.
Controles posteriores a la traducción


Moduladores de reacciones metabólicas (recepción, estímulo, respuesta)
Funcionamiento modulador:
Regulado por los efectos alostéricos (interactividad de enzimas con pequeñas moléculas)

Moduladores primarios:

El producto final de una secuencia enzimática suele inhibir el producto inicial impidiendo que continué la producción Los cambios de Ph también modifican la enzima y sus funciones.

*Enzimas

Las células poseen compuestos químicos que controlan las reacciones que ocurren en su interior. La sustancia que controla la velocidad a la que ocurre una reacción química sin que la célula sufra daño alguno ni se destruya se conoce como un catalizador. Las enzimas son proteínas que actúan como catalizadores en las células y hacen posible las reacciones,
Una enzima actúa sobre una sustancia específica llamada sustrato. Recibe su nombre del sustrato sobre el cual actúa. A una parte del nombre del sustrato se le añade el sufijo -asa. Ejemplo: Para los sustratos como la Maltosa, Urea o Lactosa, las enzimas correspondientes serán Maltasa para la maltosa, Ureasa para la urea y Lactasa para la lactosa.Desnaturalización de las Proteínas. Es la ruptura de enlaces en las moléculas proteicas por efecto


ENZIMAS: MODELO













La forma y la estructura de una enzima determinan la reacción que puede catalizar. La enzima se
Une al sustrato para formar un complejo enzima-sustrato o E-S, de tal manera que la enzima y el sustrato se ajustan perfectamente. El lugar donde la enzima recibe al sustrato se le conoce como sitio activo.
Cuando se forma el E-S, la energía de activación disminuye, esta energía de activación menor permite que la reacción ocurra más rápidamente que si no estuviese presente la enzima.


*Anabolismo

El anabolismo o biosíntesis es una de las dos partes del metabolismo, encargada de la síntesis o bioformación de moléculas orgánicas (biomoléculas) más complejas a partir de otras más sencillas o de los nutrientes, con requerimiento de energía, al contrario que el catabolismo.
La palabra anabolismo se originó del griego Ana que significa arriba.
Aunque anabolismo y catabolismo son dos procesos contrarios, los dos funcionan coordinada y armónicamente, y constituyen una unidad difícil de separar.
El anabolismo es el responsable de:

La formación de los componentes celulares y tejidos corporales y por tanto del crecimiento.
El almacenamiento de energía mediante enlaces químicos en moléculas orgánicas.
Las células obtienen la energía del medio ambiente mediante tres tipos distintos de fuente de energía que son:
La luz solar, mediante la fotosíntesis en las plantas.
Otros compuestos orgánicos como ocurre en los organismos heterótrofos.
Compuestos inorgánicos como las bacterias quimiolitotróficas que pueden ser autótrofas o heterótrofas.

El anabolismo se puede clasificar académicamente según las biomoléculas que se sinteticen en:
Replicación o duplicación de ADN.
Síntesis de ARN.
Síntesis de proteínas.
Síntesis de glúcidos.
Síntesis de lípidos.

*Catabolismo


El catabolismo es la parte del metabolismo que consiste en la transformación de moléculas orgánicas o biomoléculas complejas en moléculas sencillas y en el almacenamiento de la energía química desprendida en forma de enlaces de fosfato y de moléculas de ATP, mediante la destrucción de las moléculas que contienen gran cantidad de energía en los enlaces covalentes que la forman, en reacciones químicas exotérmicas.
El catabolismo es el proceso inverso del anabolismo. La palabra catabolismo procede del griego kata que significa hacia abajo.


El catabolismo es la transformación de moléculas complejas a moléculas simples, con liberación de energía

2.3.6.-NUTRICIÓN CELULAR .

Las partículas sólidas que han ingresado en la célula por endocitosis están formadas por moléculas cuyos átomos están unidos entre sí por enlaces químicos. Las moléculas y los átomos constituyen la materia en enlaces químicos queda retenida la energía.
Para que la materia y la energía puedan ser aprovechadas por la celula, es necesario que ésta rompa las moléculas de menor tamaño. Este proceso se llama digestión, y se produce por acción de las enzimas contenidas en los lisosomas.

Las partes útiles de la partícula pasan al citoplasma y se incorporan a él (asimilación). Las partes que no son utiles son eliminadas fuera de la célula (excreción).
Las sustancias asimiladas tienen distintos fines: la materia se usa para elaborar otras moléculas, para reponer partes destruidas de la estructura celular y para liberar energía; este último proceso se denomina Respiración celular.

Veamos en qué consiste:

1-En el medio externo: a él llegan, procedentes de los alimentos, moléculas de ácidos grasos, glucosa y aminoácidos que éstan formados por materia y poseen energía. La misma sólo puede ser aprovechada por la célula mediante la simplificación de las cadenas de carbono mediante la decarboxidación. Si libera toda la energía acumulada se denomina respiración, y si es parcial, fermentación.

2-En el hialopasma: la glucosis, formado a partir del ADP, libera energía que se acumula en el ATP. Se origina el ácido pirúvico.

3-En la matriz de la mitocondria: el ácido pirúvico se convierte en otra sustancia. Comienza el Ciclo de Krebs. Se produce dióxido de carbono, que sale de la célula, e hidrógeno, que será aprovechado por la misma.

4-En las crestas mitocondriales: mediante la acción de un conjunto de enzimas, el hidrógeno se une al oxígeno y forma agua, que es eliminada por la célula.

5-Resultado final se obtienen 38 moléculas de ATP, que contituyen una fuente de energía disponible para la célula en el momento necesario.
Nutrición autótrofa

Los seres autótrofos (a veces llamados productores) son organismos capaces de sintetizar todas las sustancias esenciales para su metabolismo a partir de sustancias inorgánicas, de manera que para su nutrición no necesitan de otros seres vivos. El término autótrofo procede del griego y significa "que se alimenta por sí mismo".
Los organismos autótrofos producen su masa celular y materia orgánica, a partir del dióxido de carbono, que es inorgánico, como única fuente de carbono, usando la luz o sustancias químicas como fuente de energía. Las plantas y otros organismos que usan la fotosíntesis son fotolitoautótrofos; las bacterias que utilizan la oxidación de compuestos inorgánicos como el anhídrido sulfuroso o compuestos ferrosos como producción de energía se llaman quimiolitotróficos.

*Quimiosíntesis

La Quimiosíntesis es la producción biológica de materia orgánica a partir de moléculas de un átomo de carbono ( generalmente dióxido de carbono o metano) y otros nutrientes, usando la oxidación de moléculas inorgánicas, como por ejemplo el ácido sulfhídrico (H2S) o el hidrógeno gaseoso o el metano como fuente de energía, sin contar con la luz solar, a diferencia de la fotosíntesis. Cadenas alimentarias completas basan su existencia en la producción quimiosintética en torno a las emanaciones termales que se encuentran en las dorsales oceánicas, así como en sedimentos profundos.

La quimiosíntesis depende de la existencia de potenciales químicos importantes, los que acompañan a mezclas no estables de sustancias, las cuales aparecen sólo localmente, allí donde los procesos geológicos las han generado.

Muchas bacterias en el fondo de los océanos usan la quimiosíntesis como forma de producir energía sin el requerimiento de luz solar, en contraste con la fotosíntesis la cual se ve inhibida en aquel hábitat. Muchas de estas bacterias son la fuente básica de alimentación para el resto de organismos del suelo oceánico, siendo el comportamiento simbiótico muy común.
Muchos científicos creen que la quimiosíntesis podría mantener vida debajo de la superficie de Marte, Europa ( luna de Júpiter) y otros cuerpos planetarios.

*Fotosíntesis

La fotosíntesis, del griego antiguo φωτο (foto) "luz" y σύνθεσις (síntesis) "unión", es la base de la mayor parte de la vida actual en la Tierra. Proceso mediante el cual las plantas, algas y algunas bacterias captan y utilizan la energía de la luz para transformar la materia inorgánica de su medio externo en materia orgánica que utilizarán para su crecimiento y desarrollo.
Los organismos capaces de llevar a cabo este proceso se denominan fotoautótrofos y además son capaces de fijar el CO2 atmosférico (lo que ocurre casi siempre) o simplemente autótrofos. Salvo en algunas bacterias, en el proceso de fotosíntesis se producen liberación de oxígeno molecular (proveniente de moléculas de H2O) hacia la atmósfera (fotosíntesis oxigénica). Es ampliamente admitido que el contenido actual de oxígeno en la atmósfera se ha generado a partir de la aparición y actividad de dichos organismos fotosintéticos. Esto ha permitido la aparición evolutiva y el desarrollo de organismos aerobios capaces de mantener una alta tasa metabólica (el metabolismo aerobio es muy eficaz desde el punto de vista energético).
La otra modalidad de fotosíntesis, la fotosíntesis anoxigénica, en la cual no se libera oxígeno, es llevada a cabo por un número reducido de bacterias, como las bacterias púrpuras del azufre y las bacterias verdes del azufre; estas bacterias usan como donador de hidrógenos el H2S, con lo que liberan azufre.

Una hoja, el lugar principal en el que se desarrolla la fotosíntesis en las plantas

*IMPORTANCIA DE LA FOTOSINTESIS.

La fotosintesis es el conjunto de reacciones gracias a las cuales las plantas verdes a partir de la energía luminosa transforman el agua y el anhidrido carbónico en oxígeno y sustancias orgánicas ricas en energía.Sin el proceso de la fotosintesis no sería posible la presencia del oxigeno en la atmosfera. Son muchos los seres vivos que dependen del oxigeno que se libera durante la fotosintesis. Y no solo del oxigeno desprendido sino que la mayor parte de estructuras de los seres vivos para su desarrollo necesitan los productos orgánicos formados durante la fotosintesis junto a materia inorgánica del propio media ambiente. Por tanto puede decirse que la materia que forma a los seres vivos está formada por materia organica.
Pero quizá el hombre depende de forma más directa de la fotosintesis que el resto de los animales, las plantas y animales emplean el oxigeno con una misión única de subsistencia mientras que el hombre no solo necesita la fotosintesis para existir sino la creciente demanda de alimentos, el aumento de las necesidades hace que dependamos de una mayor cantidad de oxigeno y por tanto de fotosintesis.

*Nutrición heterótrofa

Los organismos heterótrofos (del griego hetero, otro, desigual, diferente y trofo, que se alimenta), en contraste con los organismos autótrofos, son aquellos que deben alimentarse con las sustancias orgánicas sintetizadas por otros organismos, bien autótrofos o heterótrofos a su vez.[1] Entre los organismos heterótrofos se encuentra multitud de bacterias y predominantemente los animales.
Un organismo heterótrofo es aquel que obtiene su carbono y nitrógeno de la materia orgánica de otros y también en la mayoría de los casos obtiene su energía de esta manera. A este grupo pertenecen todos los integrantes del reino animal, los hongos, gran parte de los moneras y de las arqueobacterias
Algunos organismos heterótrofos pueden obtener energía de otras fuentes. Según la fuente de energía los subtipos serían:

Fotoheterótrofos: estos organismos fijan la energía de la luz. Constituyen un grupo muy reducido de organismos que comprenden la bacteria purpúrea y familia de seudomonadales. Sólo realizan la síntesis de energía en presencia de luz y en medios carentes de oxígeno

Quimioheterótrofos: utilizan la energía química extraída de la materia inorgánica u orgánica. Los autótrofos (plantas, cianobacterias, etc.) y los heterótrofos se necesitan mutuamente para
Cabra alimentándose de las hojas de un árbol.

*Holozoica

Cuando el alimento se obtiene como partículas sólidas que deben comerse, digerirse, absorberse, como ocurre en casi todos los animales, el fenómeno recibe el nombre de nutrición holozoica. Los organismos holozoicos deben constantemente buscar, atrapar y comer otros organismos; para ello han creado. gran variedad de estructuras sensitivas, nerviosas y musculares, para encontrar alimento, así como varios tipos de sistemas digestivos para transformar estos alimentos en moléculas bastante pequeñas para ser absorbidas. Plantas insectívoras como Dionea Venus, rocío de sol y Sarracenea purpurea complementan su capacidad fotosintética atrapando y digiriendo insectos y otros animales pequeños (hecho sorprendente en el mundo vegetal). De esto las plantas obtienen aminoácidos y otros compuestos nitrogenados para el crecimiento.
Los animales herbívoros comen plantas y obtienen sus compuestos energéticos del contenido de las células vegetales, compuestos constituidos por la planta que usa energía de la luz solar. Otros animales son carnívoros, comen animales (que, a su vez, comen plantas). Omnívoros son animales que comen material vegetal o animal. Todos los organismos heterotróficos obtienen finalmente sus nutrientes energéticos de organismos autotróficos que atraparon la energía radiante de la luz solar para sintetizar dichos compuestos.

*Planta parásita

Una planta parásita es una que obtiene alguna o todas las sustancias nutrientes que necesita para su desarrollo de otra planta. Se conocen con estas características a unas 4.100 especies en aproximadamente 19 familias de plantas de flor.[1] Las plantas parásitas tienen una raíz modificada, haustorio, que penetra la planta anfitrión y conecta con su xilema, floema, o con ambos.

3.a Holoparásita Hyobanche sanguinea, Richtersfeld, Namaqualand, northern cape, África del Sur

2.3.7.-RESPIRACIÓN.

Respiración

Por respiración' generalmente se entiende al proceso fisiológico indispensable para la vida de organismos aeróbicos.
Según los distintos hábitats, los distintos seres vivos aeróbicos han desarrollado diferentes sistemas de intercambio de gases: cutáneo, traqueal, branquial, pulmonar. Consiste en un intercambio gaseoso osmótico (o por difusión) con su medio ambiente en el que se capta oxígeno, necesario para la respiración celular, y se desecha dióxido de carbono, como subproducto del metabolismo energético.

Plantas y animales, lo mismo que otros organismos de metabolismo equivalente, se relacionan a nivel macroecológico por la dinámica que existe entre respiración y fotosíntesis. En la respiración se emplean el oxígeno del aire, que a su vez es un producto de la fotosíntesis oxigénica, y se desecha dióxido de carbono; en la fotosíntesis se utiliza el dióxido de carbono y se produce el oxígeno, necesario luego para la respiración aeróbica. La reacción química global de la respiración es la siguiente:

C6 H12 O6 + 6O2 → 6CO2 + 6H2O + energía (ATP)


*Respiración aeróbica

La respiración aeróbica es un tipo de metabolismo energético en el que los seres vivos extraen energía de moléculas orgánicas, como la glucosa, por un proceso complejo en el que el carbono es oxidado y en el que el oxígeno procedente del aire es el oxidante empleado. En otras variantes de la respiración, muy raras, el oxidante es distinto del oxígeno (respiración anaeróbica).
La respiración aeróbica es el proceso responsable de que la mayoría de los seres vivos, los llamados por ello aerobios, requieran oxígeno. La respiración aeróbica es propia de los organismos eucariontes en general y de algunos tipos de bacterias.
El oxígeno que, como cualquier gas, atraviesa sin obstáculos las membranas biológicas, atraviesa primero la membrana plasmática y luego las membranas mitocondriales, siendo en la matriz de la mitocondria donde se une a electrones y protones (que sumados constituyen átomos de hidrógeno) formando agua. En esa oxidación final, que es compleja, y en procesos anteriores se obtiene la energía necesaria para la fosforilación del ATP.
En presencia de oxígeno, el ácido pirúvico, obtenido durante la fase primera anaerobia o glucólisis, es oxidado para proporcionar energía, dióxido de carbono y agua. A esta serie de reacciones se le conoce con el nombre de respiración aeróbica.
La reacción química global de la respiración es la siguiente:
C6 H12 O6 + 6O2 ---> 6CO2 + 6H2O + energía (ATP)


Etapas de la respiración aeróbica.

De modo tradicional, la respiración aerobia se ha subdividido en las siguientes etapas:
Glucolisis

Artículo principal: Glucolisis
Durante la glucólisis, una molécula de glucosa es oxidada y escindida en dos moléculas de ácido pirúvico (piruvato). En esta ruta metabólica se obtiene dos moléculas netas de ATP y se reducen dos moléculas de NAD+; el número de carbonos se mantiene constante (6 en la molécula inicial de glucosa, 3 en cada una de las moléculas de ácido pirúvico). Todo el proceso se realiza en el citosol de la célula.
La glicerina (glicerol) que se forma en la lipólisis de los triglicéridos se incorpora a la glucólisis a nivel del gliceraldehído 3 fosfato.

La desaminación oxidativa de algunos aminoácidos también rinde piruvato; que tienen el mismo destino metabólico que el obtenido por glucólisis.
Esquema de la respiración celular

Descarboxilación oxidativa del ácido pirúvico [editar]
Artículo principal: Descarboxilación oxidativa

El ácido pirúvico penetra en la matriz mitocondrial donde es procesado por el complejo enzimático piruvato deshidrogenasa, el cual realiza la descarboxilación oxidativa del piruvato; descarboxilación porque se arranca uno de los tres carbonos del ácido pirúvico (que se desprende en forma de CO2) y oxidativa porque, al mismo tiempo se le arrancan dos átomos de hidrógeno (oxidación por deshidrogenación), que son captados por el NAD+, que se reduce a NADH. Por tanto; el piruvato se transforma en un radical acetilo (-CO-CH3, ácido acético sin el grupo hidroxilo) que es captado por el coenzima A (que pasa a acetil-CoA), que es el encargado de transportarlo al ciclo de Krebs.

Este proceso se repite dos veces, una para cada molécula de piruvato en que se escindió la glucosa.

Ciclo de Krebs

Artículo principal: Ciclo de Krebs
El ciclo de Krebs es una ruta metabólica cíclica que se lleva a cabo en la matriz mitocondrial y en la cual se realiza la oxidación de los dos acetilos transportados por el acetil coenzima A, provenientes del piruvato, hasta producir dos moléculas de CO2, liberando energía en forma utilizable, es decir poder reductor (NADH, FADH2) y GTP.

Para cada glucosa se producen dos vueltas completas del ciclo de Krebs, dado que se habían producido dos moléculas de acetil coenzima A en el paso anterior; por tanto se ganan 2 GTPs y se liberan 4 moléculas de CO2. Estas cuatro moléculas, sumadas a las dos de la descarboxilación oxidativa del piruvato, hacen un total de seis, que es el número de moléculas de CO2 que se producen en respiración aeróbica

*Respiración anaeróbica.

La respiración anaeróbica es un proceso biológico de oxidorreducción de azúcares y otros compuestos en el que el aceptor terminal de electrones es una molécula, en general inorgánica, distinta del oxígeno. La realizan exclusivamente algunos grupos de bacterias

Consideraciones generales
En la respiración anaeróbica no se usa oxígeno, sino que para la misma función se emplea otra sustancia oxidante distinta, como el sulfato o el nitrato. En las bacterias con respiración anaerobia interviene también una cadena transportadora de electrones en la que se reoxidan los coenzimas reducidos durante la oxidación de los substratos nutrientes; es análoga a la de la respiración aerobia, ya que se compone de los mismos elementos (citocromos, quinonas, proteínas ferrosulfúricas, etc.). La única diferencia, por tanto radica, en que el aceptor último de electrones no es el oxígeno.

Todos los posibles aceptores en la respiración anaerobia tienen un potencial de reducción menor que el O2, por lo que, partiendo de los mismos sustratos (glucosa, aminoácidos, triglicéridos), se genera menos energía en este metabolismo que en la respiración aerobia convencional. No hay que confundir la respiración anaeróbica con la fermentación, en la que no existe en absoluto cadena de transporte de electrones, y el aceptor final de electrones es una molécula orgánica; estos dos tipos de metabolismo tienen solo en común el no ser dependientes del oxígeno.
En la siguiente tabla se muestran distintos aceptores de electrones, sus productos y algunos ejemplos de microorganismos que realizan tales procesos:



*Fermentación.

La fermentación es un proceso catabólico de oxidación incompleta, totalmente anaeróbico, siendo el producto final un compuesto orgánico. Estos productos finales son los que caracterizan los diversos tipos de fermentaciones.
Fue descubierta por Pasteur, que la describió como la vie sans l´air (la vida sin el aire). La fermentación típica es llevada a cabo por las levaduras. También algunos metazoos y protistas son capaces de realizarla.

El proceso de fermentación es anaeróbico ya que se produce en ausencia de oxígeno; ello significa que el aceptor final de los electrones del NADH producido en la glucólisis no es el oxígeno, sino un compuesto orgánico que se reducirá para poder reoxidar el NADH a NAD+. El compuesto orgánico que se reduce (acetaldehído, piruvato, ...) es un derivado del sustrato que se ha oxidado anteriormente.

En los seres vivos, la fermentación es un proceso anaeróbico y en él no interviene la mitocondria ni la cadena respiratoria. Son propias de los microorganismos, como algunas bacterias y levaduras. También se produce la fermentación en la mayoría de las células de los animales (incluido el hombre), excepto en las neuronas que mueren rápidamente si no pueden realizar la respiración celular; algunas células, como los eritrocitos, carecen de mitocondrias y se ven obligadas a fermentar; el tejido muscular de los animales realiza la fermentación láctica cuando el aporte de oxígeno a las células musculares no es suficiente para el metabolismo aerobio y la contracción muscular.

Desde el punto de vista energético, las fermentaciones son muy poco rentables si se comparan con la respiración aerobia, ya que a partir de una molécula de glucosa sólo se obtienen 2 moléculas de ATP, mientras que en la respiración se producen 36. Esto se debe a la oxidación del NADH, que en lugar de penetrar en la cadena respiratoria, cede sus electrones a compuestos orgánicos con poco poder oxidante.

En la industria la fermentación puede ser oxidativa, es decir, en presencia de oxígeno, pero es una oxidación aeróbica incompleta, como la producción de ácido acético a partir de etanol.
Las fermentaciones pueden ser: naturales, cuando las condiciones ambientales permiten la interacción de los microorganismos y los sustratos orgánicos susceptibles; o artificiales, cuando el hombre propicia condiciones y el contacto referido.




Fermentación alcohólica